Skip to contents

Bayesian Instrumental Regression for Disparity Estimation (BIRDiE) is a class of Bayesian models for accurately estimating conditional distributions by race, using Bayesian Improved Surname Geocoding (BISG) probability estimates of individual race. This package implements BIRDiE as described in McCartan, Goldin, Ho and Imai (2022). It also implements standard BISG and an improved measurement-error BISG model as described in Imai, Olivella, and Rosenman (2022).

BIRDiE Overview Poster

Installation

You can install the development version of birdie from GitHub with:

# install.packages("remotes")
remotes::install_github("CoryMcCartan/birdie")

Basic Usage

A basic analysis has two steps. First, you compute BISG probability estimates with the bisg() or bisg_me() functions. Then, you estimate the distribution of an outcome variable by race using the birdie() function.

library(birdie)

data(pseudo_vf)

head(pseudo_vf)
#> # A tibble: 6 × 4
#>   last_name zip   race  turnout
#>   <fct>     <fct> <fct> <fct>  
#> 1 BEAVER    28748 white yes    
#> 2 WILLIAMS  28144 black no     
#> 3 ROSEN     28270 white yes    
#> 4 SMITH     28677 black yes    
#> 5 FAY       28748 white no     
#> 6 CHURCH    28215 white yes

To compute BISG probabilities, you provide the last name and (optionally) geography variables as part of a formula.

r_probs = bisg(~ nm(last_name) + zip(zip), data=pseudo_vf)

head(r_probs)
#> # A tibble: 6 × 6
#>   pr_white pr_black pr_hisp pr_asian  pr_aian pr_other
#>      <dbl>    <dbl>   <dbl>    <dbl>    <dbl>    <dbl>
#> 1    0.956  0.00371  0.0103 0.000674 0.00886    0.0202
#> 2    0.162  0.795    0.0122 0.00102  0.000873   0.0292
#> 3    0.943  0.00378  0.0218 0.0107   0.000386   0.0202
#> 4    0.569  0.365    0.0302 0.00114  0.00108    0.0339
#> 5    0.971  0.00118  0.0131 0.00149  0.00118    0.0125
#> 6    0.524  0.315    0.0909 0.00598  0.00255    0.0610

Computing regression estimates requires specifying a model structure. Here, we’ll let the relationship between turnout and race vary by ZIP code. This is the “no-pooling” model from McCartan et al.

fit = birdie(r_probs, turnout ~ proc_zip(zip), data=pseudo_vf)
#> Using c(1+ε, 1+ε, ..., 1+ε) prior for Pr(X | R)
#> This message is displayed once per session.

print(fit)
#> Multinomial-Dirichlet BIRDiE model
#> Formula: turnout ~ proc_zip(zip)
#>    Data: pseudo_vf
#> Number of obs: 5,000; groups: 618
#> Estimated distribution:
#>     white black  hisp asian  aian other
#> no  0.286 0.358 0.376  0.55 0.644 0.534
#> yes 0.714 0.642 0.624  0.45 0.356 0.466

The proc_zip() function fills in missing ZIP codes, among other things. We can extract the estimated conditional distributions with coef(). We can also get updated BISG probabilities that additionally condition on turnout using fitted(). Additional functions allow us to extract a tidy version of our estimates (tidy()) and visualize the estimated distributions (plot()).

coef(fit)
#>         white     black      hisp     asian      aian     other
#> no  0.2855931 0.3583592 0.3761561 0.5501976 0.6443233 0.5341151
#> yes 0.7144069 0.6416408 0.6238439 0.4498024 0.3556767 0.4658849

head(fitted(fit))
#> # A tibble: 6 × 6
#>   pr_white pr_black  pr_hisp pr_asian  pr_aian pr_other
#>      <dbl>    <dbl>    <dbl>    <dbl>    <dbl>    <dbl>
#> 1 9.46e- 1 3.68e-15 1.41e- 2 3.81e-14 1.21e- 2 2.77e- 2
#> 2 2.77e-15 9.99e- 1 5.45e-15 5.35e-15 1.25e- 3 1.99e-14
#> 3 9.52e- 1 7.52e- 3 7.34e-15 4.13e-16 1.95e-14 4.01e- 2
#> 4 6.18e- 1 3.81e- 1 3.54e-15 3.26e-13 1.56e- 3 3.02e-13
#> 5 9.90e- 1 4.33e- 3 3.00e-11 5.48e- 3 1.10e-14 1.83e-13
#> 6 5.63e- 1 2.65e- 1 9.76e- 2 6.42e- 3 2.74e- 3 6.55e- 2

tidy(fit)
#> # A tibble: 12 × 3
#>    turnout race  estimate
#>    <chr>   <chr>    <dbl>
#>  1 no      white    0.286
#>  2 yes     white    0.714
#>  3 no      black    0.358
#>  4 yes     black    0.642
#>  5 no      hisp     0.376
#>  6 yes     hisp     0.624
#>  7 no      asian    0.550
#>  8 yes     asian    0.450
#>  9 no      aian     0.644
#> 10 yes     aian     0.356
#> 11 no      other    0.534
#> 12 yes     other    0.466

plot(fit)

A more detailed introduction to the method and software package can be found on the Get Started page.