Calculates the "standard" weighted estimator of conditional distributions of an outcome variable $$Y$$ by race $$R$$, using BISG probabilities. This estimator, while commonly used, is only appropriate if $$Y \perp R \mid X, S$$, where $$S$$ and $$X$$ are the last names and covariates (possibly including geography) used in making the BISG probabilities. In most cases this assumption is not plausible and birdie() should be used instead. See the references below for more discussion as to selecting the right estimator.

Up to Monte Carlo error, the weighted estimate is equivalent to performing multiple imputations of the race vector from the BISG probabilities and then using them inside a weighted average or linear regression.

## Usage

est_weighted(
r_probs,
formula,
data = NULL,
weights = NULL,
prefix = "pr_",
se_boot = 0
)

# S3 method for est_weighted
print(x, ...)

# S3 method for est_weighted
summary(object, ...)

## Arguments

r_probs

A data frame or matrix of BISG probabilities, with one row per individual. The output of bisg() can be used directly here.

formula

A two-sided formula object describing the estimator structure. The left-hand side is the outcome variable, which must be discrete. Subgroups for which to calculate estimates may be specified by adding covariates on the right-hand side. Subgroup estimates are available with coef(..., subgroup=TRUE) and tidy(..., subgroup=TRUE).

data

An optional data frame containing the variables named in formula.

weights

An optional numeric vector specifying weights.

prefix

If r_probs is a data frame, the columns containing racial probabilities will be selected as those with names starting with prefix. The default will work with the output of bisg().

se_boot

## Methods (by generic)

• print(est_weighted): Print a summary of the model fit.

• summary(est_weighted): Print a more detailed summary of the model fit.

McCartan, C., Fisher, R., Goldin, J., Ho, D., & Imai, K. (2022). Estimating Racial Disparities when Race is Not Observed. Available at https://arxiv.org/abs/2303.02580.